A Multi-class SVM Classifier Utilizing Binary Decision Tree
نویسندگان
چکیده
In this paper a novel architecture of Support Vector Machine classifiers utilizing binary decision tree (SVM-BDT) for solving multiclass problems is presented. The hierarchy of binary decision subtasks using SVMs is designed with a clustering algorithm. For consistency between the clustering model and SVM, the clustering model utilizes distance measures at the kernel space, rather than at the input space. The proposed SVM based Binary Decision Tree architecture takes advantage of both the efficient computation of the decision tree architecture and the high classification accuracy of SVMs. The SVMBDT architecture was designed to provide superior multi-class classification performance. Its performance was measured on samples from MNIST, Pendigit, Optdigit and Statlog databases of handwritten digits and letters. The results of the experiments indicate that while maintaining comparable or offering better accuracy with other SVM based approaches, ensembles of trees (Bagging and Random Forest) and neural network, the training phase of SVM-BDT is faster. During recognition phase, due to its logarithmic complexity, SVM-BDT is much faster than the widely used multi-class SVM methods like “one-against-one” and “one-against-all”, for multiclass problems. Furthermore, the experiments showed that the proposed method becomes more favourable as the number of classes in the recognition problem increases.
منابع مشابه
A novel pattern recognition algorithm: Combining ART network with SVM to reconstruct a multi-class classifier
Based on the principle of one-against-one support vector machines (SVMs) multi-class classification algorithm, this paper proposes an extended SVMs method which couples adaptive resonance theory (ART) network to reconstruct a multi-class classifier. Different coupling strategies to reconstruct a multi-class classifier from binary SVM classifiers are compared with application to fault diagnosis ...
متن کاملHybrid Decision Tree Architecture Utilizing Local SVMs for Multi-Label Classification
Multi-label classification (MLC) problems abound in many areas, including text categorization, protein function classification, and semantic annotation of multimedia. Issues that severely limit the applicability of many current machine learning approaches to MLC are the large-scale problem and the high dimensionality of the label space, which have a strong impact on the computational complexity...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملHybrid Decision Tree Architecture Utilizing Local SVMs for Efficient Multi-Label Learning
Multi-label learning (MLL) problems abound in many areas, including text categorization, protein function classification, and semantic annotation of multimedia. An issues that severely limits the applicability of many current machine learning approaches to MLL are the large-scale problem, which have a strong impact on the computational complexity of learning. These problems are especially prono...
متن کاملEvaluation of Distance Measures for Multi-class Classification in Binary SVM Decision Tree
Multi-class classification can often be constructed as a generalization of binary classification. The approach that we use for solving this kind of classification problem is SVM based Binary Decision Tree architecture (SVM-BDT). It takes advantage of both the efficient computation of the decision tree architecture and the high classification accuracy of SVMs. The hierarchy of binary decision su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Informatica (Slovenia)
دوره 33 شماره
صفحات -
تاریخ انتشار 2009